Bootstrapping the Grenander estimator

نویسندگان

  • Pranab K. Sen
  • Michael R. Kosorok
چکیده

Abstract: The goal of this paper is to study the bootstrap for the Grenander estimator. The first result is a proof of the inconsistency of the nonparametric bootstrap for the Grenander estimator at a given point. The second result is the development and verification of a bootstrap for the L1 confidence band for the Grenander estimator. As part of this work, kernel estimators are studied as alternatives to the Grenander estimator. We show that when the second derivative of the true density is assumed to be uniformly bounded, there exist kernel estimators with faster convergence rates than the Grenander estimator. We study the implications of this in developing L1 and uniform confidence bands and discuss some open questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Inconsistency of Bootstrap: the Grenander Estimator

In this paper we investigate the (in)-consistency of different bootstrap methods for constructing confidence intervals in the class of estimators that converge at rate n 1 3 . The Grenander estimator, the nonparametric maximum likelihood estimator of an unknown nonincreasing density function f on [0,∞), is a prototypical example. We focus on this example and explore different approaches to cons...

متن کامل

Goodness-of-Fit Test for Monotone Functions

In this article, we develop a test for the null hypothesis that a real-valued function belongs to a given parametric set against the non-parametric alternative that it is monotone, say decreasing. The method is described in a general model that covers the monotone density model, the monotone regression and the right-censoring model with monotone hazard rate. The criterion for testing is an L p-...

متن کامل

On the Grenander Estimator at Zero.

We establish limit theory for the Grenander estimator of a monotone density near zero. In particular we consider the situation when the true density f(0) is unbounded at zero, with different rates of growth to infinity. In the course of our study we develop new switching relations using tools from convex analysis. The theory is applied to a problem involving mixtures.

متن کامل

Adaptivity and optimality of the monotone least squares estimator

In this paper we will consider the estimation of a monotone regression (or density) function in a fixed point by the least squares (Grenander) estimator. We will show that this estimator is fully adaptive, in the sense that the attained rate is given by a functional relation using the underlying function f0, and not by some smoothness parameter, and that this rate is optimal when considering th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008